The materials genome in action: identifying the performance limits for methane storage
Simon, Cory M. et al. (2015). "The materials genome in action: identifying the performance limits for methane storage." Energy Environ. Sci. 8. 1190-1199.
You can download a copy of my CV here. Last updated: 24-08-01.
Simon, Cory M. et al. (2015). "The materials genome in action: identifying the performance limits for methane storage." Energy Environ. Sci. 8. 1190-1199.
Simon, Cory M. et al. (2015). "What are the best materials to separate a xenon/krypton mixture?" Chem. Mater. 27(12). 4459-4475.
Simon, Cory M. et al. (2015). "Computer-aided search for materials to store natural gas for vehicles." Front. Young Minds. 3-11.
Xiang, Zhonghua et al. (2015). "Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture." J. Am. Chem. Soc. 137(41). 13301-13307.
Mercado, Rocío et al. (2016). "Force field development from periodic density functional theory calculations for gas separation applications using metal–organic frameworks." J. Phys. Chem. C. 120(23). 12590-12604.
Forse, Alexander C. et al. (2018). "Unexpected diffusion anisotropy of carbon dioxide in the metal–organic framework Zn2(dobpdc)." J. Am. Chem. Soc. 140(5). 1663-1673.
Mercado, Rocío et al. (2018). "In silico design of 2D and 3D covalent organic frameworks for methane storage applications." Chem. Mater. 30(15). 5069-5086.
Mercado, Rocío. (2018). "Computationally-driven investigations towards better gas adsorption materials." UC Berkeley ProQuest. 10841273.
Braun, Efrem et al. (2018). "Generating carbon schwarzites via zeolite-templating." PNAS. 115(35). E8116-E8124.
Witherspoon, Velencia J. et al. (2019). "Combined nuclear magnetic resonance and molecular dynamics study of methane adsorption in M2(dobdc) metal–organic frameworks." J. Phys. Chem. C. 123(19). 12286-12295.
Mercado, Rocío et al. (2020). "Graph networks for molecular design." ChemRxiv.
Mercado, Rocío et al. (2020). "Practical notes on building molecular graph generative models." ChemRxiv.
David, Laurianne et al. (2020). "Molecular representations in AI-driven drug discovery: a review and practical guide." J. Cheminf. 12(56).
Mercado, Rocío. (2020). "Using GraphINVENT to generate novel DRD2 actives." Cheminformania.
Zhang, Jie et al. (2020). "Comparative study of deep generative models on chemical space coverage." ChemRxiv.
Mercado, Rocío et al. (2020). "Graph networks for molecular design." Mach. Learn.: Sci. Technol.
Mercado, Rocío et al. (2020). "Practical notes on building molecular graph generative models." Applied AI Letters.
Zhang, Jie et al. (2021). "Comparative study of deep generative models on chemical space coverage." J. Chem. Inf. Model.
Mercado, Rocío et al. (2021) "Exploring graph traversal algorithms in graph-based molecular generation." ChemRxiv.
Romeo Atance, Sara et al. (2021) "De novo drug design using reinforcement learning with graph-based deep generative models." ChemRxiv.
Gao, Wenhao et al. (2021) "Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design." arXiv.
Mercado, Rocío et al. (2021) "Exploring graph traversal algorithms in graph-based molecular generation." J. Chem. Inf. Model.
Viguera Diez, Juan et al. (2021) "A transferable Boltzmann generator for small-molecule conformers." ELLIS ML4Molecules.
Gao, Wenhao et al. (2022) "Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design." ICLR 2022.
Romeo Atance, Sara et al. (2022) "De novo drug design using reinforcement learning with graph-based deep generative models." J. Chem. Inf. Model.
Nori, Divya et al. (2022) "De novo PROTAC design using graph-based deep generative models." NeurIPS 2022 AI4Science Workshop.
Mercado, Rocio et al. (2023) "Data sharing in chemistry: lessons learned and a case for mandating structured reaction data." J. Chem. Inf. Model.
Westerlund, Annie et al. (2023) "Do Chemformers dream of organic matter? Evaluating a transformer model for multi-step retrosynthesis." ChemRxiv.
Westerlund, Annie et al. (2024) "Do Chemformers dream of organic matter? Evaluating a transformer model for multi-step retrosynthesis." J. Chem. Inf. Model.
Ribes, Stefano et al. (2024) "Modeling PROTAC degradation activity with machine learning." arXiv.
Andrekson, Leo et al. (2024) "Contrastive learning for robust cell annotation and representation from single-cell transcriptomics." bioRxiv.
Gharbi, Yossra et al. (2024) "A comprehensive review of emerging approaches in machine learning for de novo PROTAC design." arXiv.